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Featured Application: The proposed multi-agent framework can be applied to cooperative
tasks between human and machines, such as human–robot interaction, autonomous car driving,
and artificial intelligence-based industrial tasks.

Abstract: In recent years, the problem of reinforcement learning has become increasingly complex,
and the computational demands with respect to such processes have increased. Accordingly, various
methods for effective learning have been proposed. With the help of humans, the learning object
can learn more accurately and quickly to maximize the reward. However, the rewards calculated by
the system and via human intervention (that make up the learning environment) differ and must be
used accordingly. In this paper, we propose a framework for learning the problems of competitive
network topologies, wherein the environment dynamically changes agent, by computing the rewards
via the system and via human evaluation. The proposed method is adaptively updated with the
rewards calculated via human evaluation, making it more stable and reducing the penalty incurred
while learning. It also ensures learning accuracy, including rewards generated from complex network
topology consisting of multiple agents. The proposed framework contributes to fast training process
using multi-agent cooperation. By implementing these methods as software programs, this study
performs numerical analysis to demonstrate the effectiveness of the adaptive evaluation framework
applied to the competitive network problem depicting the dynamic environmental topology changes
proposed herein. As per the numerical experiments, the greater is the human intervention, the better
is the learning performance with the proposed framework.

Keywords: adaptive algorithm; competitive network agent; dynamically changes networks;
human–machine–agent interaction; reinforcement learning

1. Introduction

Reinforcement learning is concerned with the problem of maximizing the rewards of learning
objects that need to be effectively controlled within a defined environment. The more complex the
human’s behavior and system configuration are, the more difficult the problem is, and the longer it
takes for the learning object to learn. These problems can be solved through additional tasks such
as pre-learning or preprocessing; however, these tasks are not very effective because preprocessing
and pre-learning take a long time to complete and corrupt the learning data. Therefore, to effectively
solve complex and difficult reinforcement learning problems, methods for solving problems through
intuitive and professional human intervention have been proposed. The benefit of learning with the
help of humans is that as the learning objects are intended to resemble humans, their learning goals
can be clearly defined, and learning can be completed quickly without pre-learning or preprocessing.
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However, existing studies on reinforcement learning focusing on learning problems with human
help were concerned with the single model problem of a simple environment, static simple network
and single agent.

As such, this study focuses on the two more competitive network topologies and it consists of
multi-agent (e.g., combat or soccer) in a complex manner. To learn effectively, learners can model
human evaluations in the form of quantitative real numbers to successfully achieve their goals and
apply adaptive policies to humans. Herein, we propose a framework whereby the test results are
precisely and strategically calculated.

The following section provides a review of existing research and literature related to
human–machine evaluations and reinforcement learning. Section 3 proposes the cooperative
human–machine evaluation framework and its algorithm. The implementation of the proposed
framework and the performance analysis of the experimental example are presented in Section 4.
Finally, the concluding remarks and future scope of work are presented in Section 5.

2. Background and Literature Review

This study applies reinforcement learning to the effective integration of human–machine
evaluations toward a goal and compared previous studies on reinforcement learning on the basis of
several categories. The learning object may be a robot, a system, or a game, and reinforcement learning
is being investigated in various fields that require complex learning toward goals. There are a number
of control strategies and relevant applications. Roman, et al. [1] proposed an adaptive control using
fuzzy components to control a town crane. Zhang, et al. [2] applied a semi-global state synchronization
method to actuator control under unknown nonuniform input delay.

When the learning object is a robot, these robots are generally classified as robot arms, humanoid
robots, and industrial robots [3–5]. Robots with a high degree of freedom usually require complicated
and difficult calculations because they require a goal that can perfectly mimic human behavior [6].
Additionally, robots learn how to behave similarly to humans so that they can also learn to expend a
collaborative effort to help with human tasks or purposes [7]. The results from these studies can be
applied to large-scale industrial applications that begin with learning and imitating simple movements,
achieving goals through collaboration with humans, and applying them to real industries [8,9].

Reinforcement learning is also often used in areas such as games, where the goal of learning
is clearly stated. This is because the algorithm of reinforcement learning is rewarded and updated
according to the actions taken by the learning object. For example, when the object performs a mission
in the game, the reward it obtains depends on its actions, which affects the final result and the target
value [10].

Studies have also been conducted to learn systems, besides robots and games. System network
and communication are complex and computationally heavy because of the need for a system that
can optimize performance and goals. Furthermore, the computational load of networks that optimize
paths such as an escape is heavy because it is necessary to derive the learning results by computing
problems in real time. Therefore, learning methods that effectively deal with the real-time computation
of a problem have been investigated [11–13].

Moreover, various methods have been studied regarding the problem of reinforcement learning to
deal with values of measuring devices such as sensors. There are methods for learning via effectively
estimating, interpolating, and approximating values before preprocessing, such as in the case of sensor
values [14,15]. In addition, some studies have designed adaptive algorithms to ensure that learning
objects are updated more reliably and effectively as they learn [16–18].

Table 1 summarizes the algorithms, contexts, and ideas proposed in previous studies and identifies
the learning methods used in each study. These studies classified whether the learning object learned
via the designed system itself or with human cooperation and also classified the learning objects into
robots (robot arms and humanoids), games, or systems.
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Table 1. Reinforcement Learning-Based Studies and Human–Robot Interaction.

Research Studies Application Learning
Method

Human-Robot
Interaction System

Sheng [19] Table-lifting task performed
jointly by a human and robot RL a O c Humanoid Robot

Lin [20] The biped walking and balance
control RL X d Humanoid Robot

Tsurumine [21] Learning of cloth manipulation by
dual-arm DRL b X Robot Arm

Breyer [22] Object picking with a robotic
manipulator DRL X Robot Arm

Wang [23]
Collaborative robot to learn from

human demonstrations about
assembly tasks

RL O Robot Arm

Gu [24] Door opening with a robotic
manipulator DRL X Robot Arm

Knox [25] Training an agent manually
evaluative reinforcement learning RL O Game

Celemin [26]
Learning continuous actions from
corrective advice communicated

by humans
RL O Game

Kim [27]
Adaptive human–machine real
number evaluation in dynamic

competing network
RL O Game

Lee [28]
Human crowd evacuation

problem using look-ahead-based
reinforcement learning

RL X System

Le [29] Complex agent-based model of
evacuation RL X System

Qiu [30] Block chain-empowered mobile
edge computing DRL X System

Chen [31] Mobile edge computing IoT
networks DRL X System

a Reinforcement Learning (RL), b Deep Reinforcement Learning (DRL), c The manuscript handles human-robot
interactions, d Human-robot interaction is not handled in the manuscript.

In relation to the existing studies that have explored mimicking of human behavior, research
related to the task of table lifting performed by humans and humanoid robots has been conducted.
Humanoid robots move by predicting human movements through prediction-based algorithms, and the
reliability of the prediction is arrived at by the motion predictor [19]. A study was conducted on
dynamically walking and balancing robots that use reinforcement learning to learn dynamic gait
without prior learning. It aimed to solve complex control problems with respect to the robot’s motion
control by mapping the motion space from discrete to continuous areas. The balanced learning method,
which used the movement of the robot arms and legs to move the zero-moment point in the robot sole,
can keep the biped robot in a static stable state. It showed that the robot can learn how to improve
motion in terms of the walking speed in the proposed way [20].

There have also been studies exploring flipping of handkerchiefs and folding of t-shirts. Emphasis
was placed on the learning of the robotic arms, and deep reinforcement learning was investigated to
learn complex policies through high-level observations such as typing. Because deep reinforcement
learning requires a large number of training samples, a method that improves the sample efficiency
and learning stability with fewer samples by combining the characteristics of smooth policy updates
with automatic feature extraction of deep neural networks was proposed [21]. Similarly, there has
been a study involving learning robots that pick up and classify objects. To be able to interact
with dynamic objects in an unstructured environment, robots need manipulation capabilities to
handle the confusion, change, and object variability. The robots learn a closed-loop policy that
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maps depth camera inputs to motion commands and compare different approaches to make the
problem easier to deal with, including the reward formation, curriculum learning, and the use of
pre-trained policies with reduced work to pre-start tasks. Training the robots with heuristics helped
achieve the desired behavior [22]. Collaborative robots are widely used in hybrid assembly tasks
involving intelligent manufacturing. Research related to teaching-learning-collaboration models,
where collaborative robots can learn through human demonstrations and support human partners
in the working environment, has been put forth. This approach allows humans to control the robot
using natural language instructions according to their personal work preferences. The robot then
learns the assembly demonstrations from human using the maximum entropy inverse reinforcement
learning algorithm and updates the task-based knowledge with the optimal assembly strategy. In
the collaborative process, the robot can leverage the learned knowledge to actively support people in
collaborative assembly work. As such, in the case of humanoid robot learning, an object is trained by
imitating or pre-learning human behavior. Hence, pre-learning is essential at all stages of simulation
or learning [23]. Robotic applications of reinforcement learning often undermine the autonomy of
the learning process to achieve practical training time in real physical systems. To overcome this
problem, recently developed deep reinforcement learning algorithms based on off-policy training for
deep Q-functions can be extended to complex 3D manipulation tasks, and efficiently implement deep
neural network policies to train the actual physical robot [24].

In contrast to the case involving interaction between the self-learning agent and the environment,
it is recommended to train an agent manually using an evaluative reinforcement framework to update
the rewards of human trainer feedback on the current state. Based on the evaluation of the agent’s
recent performance, the trainer can offer rewards in any form of representation that can be mapped
to scalar values. The agent’s goal is to act in consideration of the current state by receiving feedback
from the human to choose the action that will receive the most rewards. For this purpose, the agent
incorporates the reward function obtained from humans and selects the behavior that is expected to
receive the highest reward. By learning a reward model for human feedback, agents can act on their
goals even when there is no human feedback and choose a task that is expected to maximize their
rewards when human feedback is provided. The agent attempts to maximize the immediate reward,
assuming that the human trainer had already considered the impact of each behavior, when receiving
feedback. This problem is consistent with supervised learning. Assuming each action is a training
sample, for the selected action at time t, the state st at the current time t and the state st+1 at the next
time t + 1 are considered attributes of the sample, and the reward of the human trainer for that action
is considered a label [25]. Delivered by the corrective advice communicated by human framework,
a reinforcement learning method models new human feedback based on manually training agents
through evaluative reinforcement framework. The author used a binary signal in the action domain of
the agent. Further, the reward value was updated by appropriately utilizing past human feedback [26].

Existing studies to effectively learn through human evaluation mainly deal with simple,
uncomplicated problems of a single network. In a recent study dealing with the situation where
two or more network topologies compete and coexist, an effective algorithm is proposed in which
human evaluation is adaptively updated [27]. In this paper, propose an algorithm that strategically
updates rewards until a stable situation is reached, dealing with an environment where two or more
dynamically changing networks compete with each other and adaptively update human evaluation.

Human evacuation frameworks used in emergencies have focused on modeling and simulating
emergencies. Recently, reinforcement learning has been investigated for real-time shortest path
calculation methods that can be used in emergency situations [28]. This method has both advantages
and disadvantages in terms of two approaches: agent-based modeling and equation-based modeling.
Because agent-based models are slow but accurate, studies are being conducted to produce fast linear
models based on reinforcement learning. In addition, the formula-based modeling method is fast,
but the range of erroneous measurements is rather large [29].
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In-depth reinforcement learning methods have been studied for mining and processing large
amounts of data in a dynamically changing environment [30]. Additionally, studies dealing with the
resource allocation problems of a large amount of resources and devices have been conducted using
deep neural networks to learn the environment and make decisions regarding the allocation problems
according to network conditions, such as service latency and requirements [31].

Previous studies related to effective object learning methods for tasks that require human expertise
remain useful to overcome the limitations of preprocessing learning, which requires large amounts of
computation and numerous samples. Reinforcement learning has evolved in recent years in terms of
its applicability to complex sequential decision-making tasks which are generally modeled using the
Markov decision process (MDP). Reinforcement learning is a methodology for deciding the next action
after inferring the reward based on the achievement of the goal, which is in turn based on the agent’s
current state and the interactions between the systems exhibiting the current state [32].

The typical learning method among traditional reinforcement learning algorithms is the Q-learning
method which infers the maximized reward value by calculating the Q-function, which is a behavioral
value function as shown in Equation (1), at each time period [33].

Qt+1(st, at) = (1− α)Qt(st, at) + α(rt+1 + γmaxQt(st+1, a)) (1)

In (1), st is the state at time t, at is the behavior of time t, rt+1 is the reward of time t + 1, and α is
the learning rate in the range of (0,1). The closer the α is to 1, the more likely it is to induce learning to
place a greater emphasis on the current situation and to adjust the share of rewards for future predicted
behavior through a discount rate, γ [34].

3. Methodology of Cooperative Human–Robot Evaluation

This study is concerned with the problem of artificial intelligence soccer game shown in Figure 1.
This is an example of a special case that differs from those previously investigated. In this paper,
to deal with the environment in which two or more dynamically changing multi-agents in networks
compete and coexist with each other, designed an artificial intelligence soccer game similar to the
artificial intelligence basketball game covered in [27].
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The learning goal of the soccer game in this study is to pass the ball by avoiding the red team
soccer players who are obstructed by the blue team soccer players. In real-life football games, players
move dynamically on the field and try to pass the ball successfully to a player from the same team.

As such, players in football games described as multi-agent form a network topology as shown in
Figure 1, and these network topologies show the two teams competing against each other. Each team
is given a network topology at time t, and there is a state as a reference when it is expressed as a
reinforcement learning problem considering the situation and environment, and there is another state
that follows and competes similarly.

To deal with this reinforcement learning problem in this special case, this study defines the
Q-Function as Equation (2) and calculates the maximum human evaluation reward value by calculating
every time cycle period, t.

Qt+1
(
s1

t , s2
t , at

)
= (1− α)Qt

(
s1

t , s2
t , at

)
+ α

(
h∗t+1 + γmaxQt

(
s1

t+1, s2
t+1, at

))
(2)

State s2
t that coexists with state s1

t is not an independent state, but it is affected by the same action
in the same environment. Therefore, it can be defined as Equation (3).

at+1(
→

s2
t ) = s2

t+1 (3)

Traditional reinforcement learning problems often involved a single network topology with the
learning objects. However, this study covers two or more network topologies such as a dynamically
changing competitive network. In a single network topology, the reward policy could be learned
through a system reward update calculated from the learning object. Conversely, in this study,
to establish a reward policy for a complex network in which two networks are learned in the same
environment, the procedure for obtaining rewards through human evaluation and the reward of the
system calculated from the learning object are properly applied. Here, a procedure is involved that
updates rewards through human intervention, while existing studies [25,26] have mapped human
evaluation through a binary process; moreover, this study advances evaluation feedback in a more
quantitative and accurate form. The human rating is entered as a real value between 0 and 1, and the
reward policy is updated in a much more accurate form.

The human evaluation reward, ht, obtained in the process of learning a number of times, can be
modelled by a Gaussian distribution as shown in Equation (4),

ht ∼ N
(
µ, σ2

)
(4)

where µ is the evaluation mean, and σ is the distribution of standard deviation. In general, the mean of
the Gaussian distribution is estimated ht using Equation (5),

ht =

∑t
i=1 hi

n
(5)

where n is the sample size and is the number of quantitative rewards from human evaluation that has
been learned for a number of times t. The standard deviation of the Gaussian distribution is estimated
using Equation (6).

σ̂ =

√√√
n
∑t

i=1 hi2 −
(∑t

i=1 hi
)2

t(t− 1)
(6)

In repeated learning, when a correction value evaluated by a human is normalized through the
distribution, as described above in Equation (6), ht is calculated and ht is estimated. Subsequently,
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the reward value obtained through the estimated human evaluation via repeated learning is subjected
to a procedure for updating it adaptively, as shown in Equations (7) and (8).

Gt+1 = Gt +
(
η∆F

(
ht+1

))2
(7)

ht+1 = ht −
η

√
Gt + ε

·η∆F
(
ht
)

(8)

Here, Equation (7) can be used to minimize the loss function F
(
ht+1

)
that defines the difference

between the estimate ht+1 during time t + 1 and estimate ht the time t. When ht+1 is updated, the step
size η should be set differently for each estimate iteration; hence, η is increased when the variation in
the estimated human evaluation reward value is small, and η is reduced when the variation in the
reward value through the estimated human evaluation is large. Gt stores the sum of squareds of the
gradient values of ht updated through estimation in time t. In the case of updating ht, the process
proceeds to a size inversely proportional to the root of Gt in the existing step size η. The reason for
this is that if the estimated human evaluation value ht has changed significantly, it will move less.
Conversely, if the estimated human evaluation value ht has changed less, it will shift more. At this time,
ε is a small value of between 10−4 and 10−8, meant for preventing division by zero. As per Equation (8),
the reward value, ht, adaptively updated by the human evaluation is compared with the human
evaluation reward, ht, obtained from learning in the present iteration. As shown in Equation (9), ht is
updated again via adopting the greater of the two values.

h′t = max
(
ht, ht

)
(9)

In Equation (9), the correction value h′t updated adaptively by human evaluation should be
appropriately calculated with the reward value of the system derived from the update of the learning
object to determine the final reward value, h∗t .

h∗t = (1− δ)rt + δh′t (10)

In Equation (10), h∗t is calculated as the reward, rt, of the system derived from the updating of
the learning object, and the correction value, h′t, adaptively updated via human evaluation, and it is
calculated using the appropriate policy rate, δ, by the human intervene policy rate. On application of
the quantitative evaluation of human being proposed in this study adaptively, the framework that
established the system reward value and the appropriately calculated policy through the update of
learning object is shown in Figure 2.
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Table 2 shows the complete algorithm involved in the proposed cooperative human–machine
evaluation framework. First, the human intervene rate, δ, the discount rate, γ, and learning rate, α,
are defined (lines 1–3). The agent observes the new state (line 6). Then, receive the exact quantitative
evaluation h from the human (line 10), the update of the adaptive human evaluation reward (lines
11–15). Finally, when the reward for the Q-function is updated and determined, the Q-function is
calculated (lines 17 and 18). This process is repeated for a given time, T, to proceed with the learning
process (lines 4).

Table 2. Algorithm for Cooperative Human–Robot Evaluation Framework.

1: δ← constant//human intervene rate

2: γ← constant//discount rate

3: α← constant//learning rate

4: for 1 ≤ t ≤ T

5: while true do

6: →
s ← getState()

7: TakeAction
(
→
a
)

8: TakeSystemReward(rt)

9: wait for next time step

10: h ← gethumanQuantitativePreciseSignal()

11: Rht ← getRandomlyGeneratedReward()

12: if h =!0

13: Estimation for h ∼ N
(
µ, σ2

)
14: ht =

∑n
i=1 hi
n

15 ht+1 = ht −
η

√
Gt+ε
·∆F(ht)

16 h′t = max
(
ht, ht

)
17 H′t = max(h′t, Rht)

18 TakeFinalReward
(
H′t

)
19 H∗t = (1− δ)rt + δH′t

20 Qt+1
(
s1
t , s2

t , at
)
= (1− α)Qt

(
s1

t , s2
t , at

)
+ α(H∗t+1 + γmaxQt

(
s1

t+1, s2
t+1, at

)
21 end if

22 end while

24 end for

4. System Implementation and Experimental Results

This section explains in detail the cooperative human–machine evaluation framework introduced
in Section 3. The implementation of the proposed framework and the numerical analyses using the
proposed software program are presented in this section. The program software is developed using
MATLAB© (made by MathWorks, Natick, MA, USA)and C++ language. The implemented software
program includes several panels and two graph windows.

The panels that make up the program deal with the network topology as shown in Figure 3.
They form a network in two dimensions as shown in Figure 3a,b and in three dimensions as shown in
Figure 3c and are expressed in a distribution to maximize visibility.
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Topology. (2-dimension) at time t, (b) Possible Actions and the Relevant Statutes (2-dimension),
and (c) Distribution for Possible Actions and the Following Status.

The graph window and the windows that show the calculated values are shown in Figure 4.
The windows have several functions. In a soccer game depicted in dynamically changing competitive
network topologies as shown in Figure 4a, the players’ status changes and the system’s reward is
calculated and shown.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 16 
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Soccer. Game, (a) Automatically Calculated System’s Reward and (b) Human’s Feedback for Winning
a Game.

At the same time, the user monitors two competitive network topologies depicted as a football
game and inputs feedback on the behavior of the current state with a real number between 0 and 1.

The evaluation feedback from the human is calculated by estimation and adaptive reward
evaluation calculation, as shown in Table 2.

Afterward, the reward from the system in Figure 4a and the human evaluation in Figure 4b are
calculated according to the given level of human intervention, and the reward value according to the
behavior of the learning object is updated.

Figure 5 shows a program that implements the proposed cooperative human–machine evaluation
framework for the reinforcement learning of competitive network topologies. The panels and windows
that make up the program are described in detail in Table 3. For instance, in a soccer game, there exist
both network topologies: one and its enemy, coexisting in the same environment.
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In this study, a soccer game was supposed, and an experiment was carried out through the example
of learning to deliver the ball to allies while avoiding the enemy network that obstructed the flow of
the ball. The players of both teams do not stay in a fixed position but have a distribution over a defined
range and move dynamically; thereby, changing the network topology. The human evaluator visually
confirms the degree of obstruction of the path for the ball to be delivered by the enemy and enters a real
number between 0 to 1 accordingly. When a game agent passes a ball without any intervene, an expert
(human) evaluates the pass closed to 1 using the developed system. The human’s evaluations are
subjective and influenced by the locations of the opponents and other reasons. The evaluation score
modifies the reward values using Equations (9) and (10). Then, the game agent changes the passing
action to obtain higher reward using the provided algorithm shown in Table 2. In the iterative learning,
the human evaluation reward is calculated and updated by the provided calculations of the reward
value of the system itself and the human evaluation reward value by the cooperative human–machine
evaluation framework.

Figure 6 shows the results of learning a soccer game represented by two networks that coexist
using the proposed cooperative human–machine evaluation framework. There are two algorithms
prepared for comparisons with the proposed cooperative human–machine evaluation framework.
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Table 3. Implemented Cooperative Human–Machine Evaluation Software Program.

Type Function Detailed Function Configurations

Panel
Application of

competitive network
(e.g., Soccer Game).

- Iteration/parameters’ setting.
- Defense/attack range.
- Button generation.

- Define an iteration
- By defining the defense

range and attack range,
specify the range of the
following actions.

Panel Network topology.

- Monitoring players’
network topology.

- Monitoring system’s reward.

- Representation of a
coexisting network topology
only with current statues of
both players’ group.

Panel
Players’ statue network
topology distribution

(2-dimension).

- Monitoring both players’
(e.g., Blue and Read team)
network topology.

- Representation of a
coexisting network topology
with current statues and the
following future statues.

Panel
Players’ state network
topology distribution

(3-dimension).

- Representing 3-dimensional
network topology.

- Representation of probability
distributions depicting the
following statues.

Window Adaptive human
evaluation.

- Input window for human
reward evaluation.

- Calculation of adaptive
human evaluation.

- The network topology
learned and evaluated by
humans in each iteration

- It is updated by the adaptive
human evaluation strategy
between the estimated
values and the current
evaluated values in
the iteration.

Window Reward calculation and
updates.

- Analyzing
integrated reward.

- Measurement of
system performance.

- The rewards obtained for
each learning are calculated

- The average value is
updated, and system
performance is visualized.

The graph of Figure 6a represented by the symbol “o” signifies the reward of cooperative
human–machine evaluation framework in each iteration as calculated by the algorithm of Table 2 and
the graph of Figure 6a represented by the symbol “*” signify the value of the average value of the
reward of a cooperative human–machine evaluation framework. Figure 6b is an algorithm in which the
human evaluation is evaluated in binary (of 0 and 1). Moreover, the graphs of Figure 6b represented
by the symbol “o” signify the reward of the simple evaluation in binary in each iteration, and the
graph of Figure 6b represented by the symbol “*” signifies the average reward of evaluated in binary
strategy. Figure 6c is an algorithm in which the traditional MDP method without human intervention.
The graphs of Figure 6c represented by the symbol “o” means the reward of the MDP method in
each iteration and the graph of Figure 6c represented by the symbol “*” signify the average reward
of evaluated in the MDP method. As seen in Figure 6, the proposed cooperative human–machine
evaluation achieved the fastest convergence.

This result is considered to be the result of human intervention that made quick decisions with
specialized knowledge, unlike the way of updating only the reward of the system composed of existing
learning objects. This study proposed a strategic method that aims to adaptively and quickly update
the human evaluation scale and converge quickly to the maximum value.
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Table 4 shows how the proposed cooperative human–machine evaluation framework differs in
learning performance according to the degree of human intervention. The results are summarized
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according to the parameter of the degree of human intervention rate δ. The problem addressed in this
experiment is that two networks each have 10 nodes and coexist in the learning environment
simultaneously. The problem is solved in three cases by applying the proposed cooperative
human–machine evaluation framework. The first case solved the problem only with the system
reward of the network topology existing inside the environment without any human intervention.
As the training iterations were repeated, the reward value increased, and the system learned to converge
to the maximum; however, the performance was poor and needed enough iterations. On the other hand,
in the second case, if the policy for updating reward is updated by applying the reward calculated
through the system’s internal reward and the proposed cooperative human–machine evaluation
framework at a 50% rate, convergence tended to occur quickly to the maximum reward value. In the
last case, where a 90% rate was applied, the highest Q-function value was obtained at the same number
of learning while converging to the maximum reward value as the target. This is shown by comparison
in Figure 7.

Table 4. Comparisons of three different experiment scenarios using the proposed framework.
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These results may vary depending on the assumed conditions and parameters. However,
the proposed cooperative human–machine evaluation framework is effective in the complex network
topologies in the context of human evaluation intervention using reinforcement learning.
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In addition, a quantitative empirical study was conducted from two perspectives to show that the
method proposed in this study is effective. As shown in Figure 8, when learning in three different ways
during the same time, the time when the pass success rate of the Artificial Intelligence (AI) soccer game
reaches more than 95% was compared. The result of learning the pass of players in the AI soccer game
using the method of strategically updating the reward in the form of real number through human
evaluation, the method proposed in this study, shows a pass success rate of up to 96.6%. The binary
number reward method achieved a pass success rate of 86.6% within the same time, and when learning
using the Markov Decision Process method, a pass success rate of 62.6% was achieved during the same
time. Using the method proposed in this study, strategically updating the reward in the form of a real
number through human evaluation, the time required for the pass success rate of players in the AI
soccer game to reach 95% was t = 29. In contrast, the binary number reward method took t = 73 to
reach the 95% success rate of the pass. When learning using the Markov Decision Process method,
the time it takes for the pass success rate to reach 95% is t = 93.
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5. Conclusions

As reinforcement learning is applied to several goal-oriented systems, the difficulty of problems
and the complexity of the calculations increase, and various methods have been proposed to solve
them. In the process of researching algorithms that solve these problems and lead to good performance,
methods of learning are studied by adding accurate and quantitative evaluation through human
intervention with expert knowledge and experience in reinforcement learning process. This trend has
led to the need for pre-processing or pre-learning to make learning objects resemble human behavior
or appearance in reinforcement learning. Existing studies involving human intervention at the same
time as learning are relatively scarce and instead relied on prior learning.

This study proposed a new method of updating the rewards of the system obtained in the process
of learning by learning objects and the rewards derived from the evaluation of humans with expertise
on the problem. This framework also proposed an adaptive strategy to update rewards resulting
from a stable and effective human evaluation. In addition to that, if the learning object was dealing
with a simple and independent form, this study deals with the problem of complex network topology.
This type of problem suggests the need for a cooperative human–machine evaluation proposed in this
study. The proposed framework was implemented as a software program that supports the cooperative
human–machine evaluation framework to demonstrate efficiency. Therefore, the effectiveness is
demonstrated by comparing the results in various scenarios.
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The proposed multi-agent framework can be applied to cooperative tasks between human and
machines, such as human–robot interaction, autonomous car driving, and artificial intelligence-based
industrial tasks. In particular, it contributes to fast leaning process using multi-agents’ evaluations.
However, the provided framework is limited from the fact that human’s evaluation interface and
timings are crucial for faster training processes. In addition, various industrial tasks require different
human evaluation methodologies. For this reason, the provided framework and its implementation
have to be modified with the objectives of applications.

Further studies can consider the problem of determining more effectively the degree of human
intervention required to update the combination of rewards via human evaluation and rewards from
system learning. In addition, the provided framework can be applied to several real-life applications
and scenarios. In a problem similar to the dynamic change competitive network topology discussed in
this study, human intervention can be learned more quickly and efficiently.
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